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ABSTRACT

3D cell culture assays have emerged as the basis of an intbrov
model system for evaluating therapeutic agents, molequriatres,
and exogenous stimuli. However, there is a gap in robust atemp
tional techniques for segmentation of image data that diected
through confocal or deconvolution microscopy. The mainéss
the volume of data, overlapping subcellular compartmetd,vari-
ation in scale and size of subcompartments of interegeoietric
technique has been developed to bound the solution of thegmno
by first localizing centers of mass for each cell and thenitiaring
clumps of cells along minimal intersecting surfaces. Anrapp
mate solution to the center of mass is realized throughtiterapa-
tial voting, which is tolerant to variation in shape morpbgies and
overlapping compartments and is shown to have an excel@s¢ n
immunity. These approximate estimates to centers of masthan
used to partition a clump of cells along minimal intersegsnrfaces
that are estimated by Radon transform. Examples on realatata
performance of the system over a large population of dataae
uated. Furthermore, it is shown that the proposed methggdko
extensible in terms of its application to protein localiaatstudies.

1. INTRODUCTION

Current models of high-throughput and high-content sdérepare
based on two-dimensional cell culture assays that are geithier

studies. However, most of the previous techniques are mbicaple
for automated segmentation mammospheres labeled by tha@ar

%ompartments, and the proposed solution bounds an inhernt

posed problem through geometric constraints. A key observés
that nuclear regions are often convex and form a positiveature
maxima when they overlap each other. This feature was uskdrea
in 2D segmentation of nuclear regions [9]. However, evahga8D
convexity and estimating 3D surface curvature is hindesesignif-
icant computational complexities.

In image understanding, saliency or perceptual groupin®]3
can be driven by continuity [11], symmetry, or closure. Amon
these, it is well known that symmetry is a pre-attentive pasc[1]
that improves recognition, provides an efficient mechari@racene
representation, and aids in reconstruction and desaniptRadial
symmetry is a special class of symmetry, which persists inreat
multiple scales. Robust and efficient detection of inexadial sym-
metries facilitates the semantic representation of imégesumma-
rization and interpretation. Yet, the notion of radial syatrg is used
in a weak sense since the basic geometry can deviate in asgiect
and convexity. At the coarse scale, localization of the axipnate
centroid of each nucleus in a three dimensional cell culagsay
enables partitioning a mammosphere along the planes thatae
minimum surface cross sections and are possibly alignédpeints
of maximum curvature along the surface. At the fine scalglipa-
tion of punctate and radial protein events within each rugtnables

on plastic or glass. Although such a model system may be appréiN accurate representation of cause and effect.

priate as an initial step toward discovery or for certaineasp of
biological studies, the knowledge may not be readily ext#ado

The novelty of the proposed method is in specific geometric
steps designed to bound the solution through seeding arsksub

in vivo models. On the other hand, animal studies are expensiv@uent partitioning. The basis for seeding is through gedmebting

and time-consuming and as a result cannot scale for highugimput
studies that are necessary to build a space-time contindfure- o
sponses in the presence of biological heterogeneity. Aerrimedi-
ate step is three-dimensional cell culture model systerhighhave
been demonstrated to have some of the functionalities dfthieo
models.However, such a model system introduces signifimamt
putational challenges: (i) imaging is in 3D and not in prtigT
space, (ii) subcellular compartments often overlap anihelation
is made difficult, and (iii) variations in subcellular scateposes a
more complex segmentation problem at the object level. ilgh-
per, we present a series of geometric steps for segmenttidp
cell culture models, also known as acini, that enables sufese
localization studies and protein-protein interactions.

Research in the analysis of subcellular structures spatg¢e
based features for classifying patterns of protein expad$], ge-
ometric methods [9], and surface evolution methods [4] felird
eation of nuclear compartments. Segmentation of a sult@etiom-
partment provides context for quantifying protein locatian in fixed
samples with an antibody or a nucleic-acid-based probgiimglicell
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and perceptual grouping, and is implemented through theement
of specifically tuned voting kernels [8]. The method has #zoé
noise immunity, is tolerant of variations in target shapaescand is
applicable to a large class of application domains. Loatitn of
centers of mass for each nucleus provides a bound on oveghles
segmentation. Nuclei are connected each other in a mammasph
where the adaptive thresholding cannot provide enougteauglar-
tition information. Therefore, the nuclei are initiallyggaented by
Voronoi tessellation of the nuclear seeds and the resudtsedined
by the Radon transform. Nuclear segmentation provides the ¢
text localization studies under different experimentahtments. In
some cases, protein localization may be punctate (e.g., EgAir
protein). These punctate signals can be further segmenitgdain-
tify a specific biophysical properties. Segmentation okéhsparse
and noisy punctate signals can also be realized throughestieda-
tion at a finer scale followed by modeling the intensity diattion
as a mixture of Gaussian for subsequent local thresholding.

2. PREVIOUSRESEARCH

Current state of art for delineating nuclear regions froniticellu-

lar systems has been limited to intensity-based informatod ge-
ometric information are largely under-utilized. Some af¢b meth-
ods are interactive and serve as a computer-aided tool teadse
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Fig. 1. Computational steps in segmentation and localizatiop:
segmentation of nuclear channels provides context forilataon
studies; and (b) segmentation of punctate protein evemgdas
guantitative data for characterizing biophysical prapsrt

operational throughput. In [7], background and nucleaioregyare
delineated with automatic thresholding. The nuclear sitlegén esti-
mated with the Hough transform, which provides an initiaistoaint
for a watershed-based delineation. In [10], limitationgAdhwere
identified: (1) initial thresholding, (2) noise, and (3) Igradient in
some of the nuclear regions. These limitations were theneaddd
using level set methods for improved performance. In [1@tlear
regions were modeled as elliptic features and fragmentatlifes

were grouped together to form a convex hull. The method presiu

a segmentation that is not very accurate along the surfaitegor
tential fragmentation of nuclear regions. Recently, in fBhmmo-

sphere slices were segmented in 2D and then segmented 28 sli

were merged together. However, the assay produced nuelgians
that tend to be separable in 2D (e.g., little overlap) whidntaining
similar scale in nuclear size. Heterogeneity in these assdaginate
from cell line (e.g., normal or tumergenic) and specific timeents
that they go under.

In contrast to previous approaches, the proposed methad
high level geometric features to delineate a multicellsjemtem. Ge-
ometrically, nuclear regions are almost convex; howewales(e.g.,
size) is heterogeneous. Furthermore, when two nucleasnegiver-
lap, they form folds corresponding to positive curvaturexime.
Partitioning adjacent nuclear regions along points of atuse max-
ima, or a variation of that, is the final step of the process.

3. APPROACH

Specific steps in delineation of nuclei and localization ajtgins
in a mammosphere system are shown in Figure 1. Both nuclgar
mentation and protein localization are initialized by skeedlization
via radial voting. Voronoi tessellation followed by the Radrans-
formis used for nuclear segmentation due to the mass cawityeof
nuclei; while the expectation maximization algorithm isfpemed
to separate sparsely distributed proteins from the noiskdraund
in a partitioned nucleus.

Starting from the interpolated 3D image in nuclear chanthel,
solution is initially bounded by computing seeds that pdevan es-
timate to the location of the centroid of each nucleus thioitera-
tive radial voting. Simultaneously, the colony is threstsal in 3D,

which produces an erroneous segmentation of the clump obyea

cells by merging them. Each clump is subsequently labeletlfe

ther analysis, and any connected volume with more than twdsse
is subject for further analysis. Partitioning is performmdfinding
planes that best separate adjacent nuclei, and the acttraddoéogy
is based on the Radon transform. However, Radon transfeeges
by a coarse segmentation from adjacent seed locationdlyldeech
a coarse segmentation should be realized through vorosselta-
tion, which is compute intensive in 3D. A simpler approxiioatto
voronoi tessellation is implemented to provide a rough sagation
of nuclear regions. This segmentation is further refined bydd
transform. Nuclear segmentation provides the contextriatem lo-
calization, which may be heterogeneous in each mammosphere
some cases, protein localization is punctate. These pensignals
can also be detected through 2D radial voting and accuratady
mented in the secondary channel that visualizes proteiimgeaest.
The intensity distribution of these punctate signals is ebed as a
Gaussian mixture model, where the latent variables cantbeaed
with the expectation maximization algorithm.
(a
3.1. Nuclear seed estimation with iterative voting
The basis for seeding (e.qg., estimating centers of madgpsgh ge-
ometric voting and perceptual grouping, and is implemetttesligh
the refinement of specifically tuned voting kernels [8]. Imgel,
voting operates on the notion of continuity and proximitiigh can
occur at multiple scale®.g., points, lines, lines of symmetry, or
generalized cylinders. The novelty of our approach is inniledi a
series of kernels that vote iteratively along the radiabogential di-
rections. Voting along the radial direction leads to lazation of the
center of mass, while voting along the tangential directaforces
continuity. At each iteration, the kernel orientation iimed until
it converges to a single focal response. Voting kernels has@ne-
shaped with an initial scale and spread (e.g., height ane) tkaat is
refined iteratively. These kernels are initially appliedra) the gra-
c]dien’[ direction, then at each consecutive iteration ancheh grid
ocation, orientation is aligned along the maximum locaipanse.
The method has excellent noise immunity, is tolerant toatems
in target shape scale, and is applicable to a large classptitap
tion domains. Figure 2 shows a subset of voting kernels tuat n
topography, scale, and orientation.
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Fig. 2. Kernel topography: (a-e) Evolving kernel for the detettio
of radial symmetries (shown at a fixed orientation) has aezejulal
active area with Gaussian distribution along both axes.

To illustrate the behavior of iterative voting, Figure 3 wlsan-
termediate steps that leads toward final results for oveitap2D
objects that are generated synthetically. The voting leeqgls corre-

sesponds to the spatial clustering that is initially diffuselas subse-
quently refined and focused into distinct regions. An exangbithe
3D voting is shown in Figure 4, where each nucleus in a mammo-
sphere has been detected.

3.2. Partitioning of a mammosphere from seeded nuclei

The process is initiated by a coarse segmentation of nudthiav
3D voronoi tessellation. Tessellation facilitates (1)ntiécation of
a local neighborhood where each nuclear region is contairiidih

its own space, and (2) improved computational performaridee
first feature has to do with constrained locality, which éfiates
error and reduces ambiguities. Without tessellation, Radmnsfer
will fail because two neighboring nuclei may have a third leus
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Fig. 3. Detection of radial symmetries for a synthetic image with

multiple overlapping objects: (a) original image; (b)-(@}ing land-
scape at each iteration; and (h) final localization of centémass.
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Fig. 4. Two views of voting results of a 3D clump of mammosphere:
(a) top view; (b) side view.

that sits at the fold of the two touching nuclei. The secoratifiee
has to do with the fact that not all adjacent nuclei are cotateand
that there is a clear empty space between them. Under thikiticon
there is no need to refine the segmentation further.

The details of Radon transform are as follows; however,ifor s
plicity the 2D version is first described. The Radon transfoep-
resents an image as a collection of projections in a funat@mnain
f(x,y) along various lines defined by the shortest distgméem
the origin and the angle of inclinatighwith the y axis:

R(p,0) = / f(z,y)5(p — z cos @ — ysin O)dxdy. @

Properties of the Radon transform enable delineation abyeauch-
ing objects. For example, two adjacent objects, repreddntecir-
cles in Figure 5(a), and their corresponding Radon trans&irown
in Figure 5(b), have a local minimum that is locateghat 17 and
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Fig. 5. An example of 2D object segmentation using the Radon
transform: (a) synthetic object composed of two circlest @) cor-
responding Radon transform with local minimumgat= 17 and

0 = 135°.

(b)
Fig. 6. Two views of final segmentation of a mammosphere: (a) top
view; (b) side view.
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3.3. Protein localization

Nuclear segmentation provides context for quantitatisessment
of protein localization, which may not necessarily be diffd. For
example, nuclear foci formation are punctate and are forimed
phosphorylation of histongH2AX following ionizing radiation. These
punctate features can also be detected with radial votirgynauch
smaller scale, within each 3D connected component. Acewseq-
mentation of these punctate events can reveal certain piegpthat
are of interest for biophysical modeling. This kind of fuocial-
ity is often referred to as the interest point operator aredethis a
large literature on this topic, but iterative voting is reband can
distinguish overlapping events. However, segmentatiopuotctate
events can be complex as a result of variations in (1) fod, 4i2)
background intensity, (3) foreground intensity, (4) saenmplepara-
tion, and (5) potential cross-talk between neighboring. f&hile
voting provides an initial localization of foci, a robust thed for
accurate segmentation is needed. Our approach is based es (1

¢ = 135°. This local minimum corresponds to the integration overapjishing a local neighborhood for each foci, which is dsanded

the line that separates the two objects with the smalless@ection.

Similarly, the 3D Radon transform represents a 3D volume as
collection of projections in a function domajf(z, y, z) along var-
ious planes defined by the shortest distapdeom the origin, the
angle of azimuthp around thez axis and the angle of elevatigh
around they axis:

R= /f(:r,y,z)(S(p —xcospcos — ysin ¢ cos O — zsin 0)dxdydz

by the maximum size of the foci, and (2) modeling the locadmsity
distribution as a mixture of two Gaussians, where the latanables
@re estimated using the expectation-maximization metfbd tech-
nique has been validated on synthetic data with and withoisen
and then applied to real data.

Let the mixture Gaussian density model be expresseg(a$©) =
S M ipi(x]0;), where>" M a; = 1, and eachp; is a Gaus-
sian density function parameterized fy That is, eachx may be
generated from any of th&/ distributions with different probabili-
ties, whereM = 2. By consideringt’ = {x;}\, asincomplete

The 3D Radon transform is separable and the 3D Radon tramsfor 4o and introducinginobservable data asy = {y:}Y, (where

can be decomposed into a series of 2D Radon transforms. Giveyq cl...

a local cube containing two nearby adjacent cells, each aftwh
is bounded by a seed, the optimal plane separating theseetigo c
should be located between the two seeds and have the sroadiest
section. The local minimum in the 3D Radon transform coresis
to the integration over the optimal plane in the local cubigufe 6
shows an example of nuclear segmentation results.

., M and whose values indicate which component density
generates eack;), the log-likelihood function can be simplified as

log(L(6]|X,Y)) = log(P(X,Y|0))

N N
= log(
i=1

P(xily:)P(y)) = Y _ log(aw,py, (xy,105,))

i=1



where the parametets and the latent variablg’ can be estimated
with the EM approach. The EM algorithm is a two-step itemtiv
optimization technique that maximizes the expectationhef lbg-
likelihood function, conditioned on the observed data dwedcurrent
estimate o©:

e Expectation step: At the n-th iteration, given the observed data
and the current estima@"™ !, construct the expectation of the log-
likelihood function with respect to the unknown random sbtey:
Q0,0 ) = E[log P((X,Y]|©)|X, 0" 1)].

e Maximization step: Compute the next estimation & by maxi-

- n—1y. gn . 9Q(©,0"" Y _
mizingQ(©,0" ') o™ : L= —0.
The EM algorithm initiates from an estima&@”, which is refined

iteratively, and terminates whef®™ — @™~ !|| is less than a small

with those planes that bisect neighboring nuclei alongts@hmax-
imum curvature. In this case, the error rate can be reduceddh
improved seed localization.

5. CONCLUSION

This paper presented a series of geometric steps for segtioenof
mammospheres in 3D. The first step localizes an approximabio
center of mass for each nucleus and then partitions a clunmoi-of
clei along minimal intersecting surfaces. Approximateusioh to
the center of mass is realized through iterative spatiahgotvhich
is tolerant to variation in shape morphologies, percepsualaces,
noise, and overlapping compartments. These centers of anass
then used to partition a clump of cells along minimal intetis®

threshold. The) values so-obtained at the final iteration label eachg rfaces that are estimated by Radon transform. The taghiigs
data sample ick’. Figure 7 shows an example of protein localization paen tested on 151 colonies and their corresponding 3D eslum

results in partitioned nuclei.

and error rate is fully characterized. Segmentation of taenmo-

sphere has provided the context for localization studidgres we

(b)

(@) (1]
Fig. 7. Two views of localization of protein in partitioned nuclé¢a)
top view; (b) side view. [2]
4. EXPERIMENTAL RESULTS
The proposed approach was implemented and applied in aetaih s 3]

mammospheres, imaged with deconvolution microscopy. Magée
resolution along the andy directions is0.15um, and the resolu- 4]
tion along thez direction is1.32um. 151 colonies in the data set
with an average of1 seeds per colony were processed using the
proposed approach and the same input parameters.seeds were
estimated through iterative radial voting; howeveét,nuclei did not
register any corresponding seeds, which indicates a d@testror

rate of4%. This is presumably due to abnormal scale and shape of
the nuclear volume, and the exact conditions are as follows:

(5]
[6]

e Low contrast between overlapping nuclei: Absence of gradient in- 7]
formation between overlapping nuclei coupled with theidental
morphological properties provide ambiguous voting evidethat
produces one fixed point instead of two. 8]

e Morphological abnormality: Often a single nucleus has an abnor-
mal elongated shape and radial voting merges multiple seisp
into a single fixed point. This condition is highly correldtaith the
previous case.

e Incomplete information: This is an imaging problem, where imag-
ing is incomplete and part of the nuclei is missing from thiikeet-

ric image. [10]
e Low sampling resolution in Z axis: The current interpolation al-
gorithm is linear for making a volumetric stack homogeneiouiss

X, Y, and Z dimension. Linear interpolation smoothes thedigmat

in the Z direction and reduces the contribution of the cqoesling
gradient information. An improved model will use some forin o
spline interpolation.

Finally, partitioning accuracy was compromised 8r pairs of
overlapping nuclei from a total af’50 pairs, which indicates an er-
ror rate of approximatel2%. These errors occur when the optimum
plane for separating two nuclei is not the desired plane éotitpon-
ing two neighboring nuclei. The notion of desired planes tbado

9]

(11]

[12]

have shown how components of the same method can be used to
characterize punctate signals within the nuclear region.
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